1. COLLECT DATA

In the first online survey, native speakers of German were asked to imitate a previously presented dialect or closely related language by translating a number of sentences into the perceived dialect (cf. Schäfer et al. 2016).

2. PRESENT DATA

In a second study, other speakers of German were presented with some of the imitation results from the first survey along with data from natural languages from the five varieties tested.

3. DATA EVALUATION

Based on 158 questionnaires, all given localisations of the imitated vs. natural language data were bundled for each variety (see maps 1-5).

4. MORE DATA

Imitation can give us clues about phenomena which underlie lay concepts; there is still some further research which needs to be done with better balanced test items.

The second survey included 22 sentences:
- Ten sentences from imitation data (five sentences per language)
- Ten sentences from natural language
- Two sentences in foreign language

While imitating, the most characteristic and typical forms of a variety were strongly reduced. What is left in the imitation are structures which deviates from Standard German but are generally phonological (mainly phonetic). Other (e.g. syntactic) structures do not seem to play an important role for lay concepts. This needs to be confirmed by forthcoming studies. Future research might also consider how the parts of an imitation that do not differ from a standard variety interact with lay expectations.

The second survey included 22 sentences:
- Ten sentences from imitation data (five sentences per language)
- Ten sentences from natural language
- Two sentences in foreign language

The 20 relevant test items show an average of 15 deviations (SD=2.54) from Standard German per sentence. Most of the deviations are phonetic, generally concerning the vowel system (cf. chart 4).

A set of 4-5 randomly grouped sentences was presented in written form next to a plain base map of Central Europe. The subjects had to place a mark on the map where they would place the sentence’s geographical origin. Note: They had the option of choosing "does not fit any dialect".

With the lay people’s mental maps from the second survey, we get an impression about how "good" the imitators from the first survey imitated the varieties with which they were presented and whether they produced salient enough structures to satisfy the expectations of German speakers about the varieties tested. In addition, it sheds some light on German speakers’ areal concepts of the dialect continuum under investigation.

The distances between the lay people’s placements and the birthplace of the natural language speakers as the point of reference were measured by using the kernel density estimation (KDE). The results are shown in charts 1-6. It is surprising how similar the natural language and imitation data are (chart 2). As the results of all varieties show the variation of the dialect continuum. With Upper German (chart 1), Dutch (chart 2) and Irish (chart 4) the placements of the imitation data is just a little nearer towards the point of reference than the natural language data placements.

The 20 relevant test items show an average of 15 deviations (SD=2.54) from Standard German per sentence. Most of the deviations are phonological, generally concerning the vowel system (cf. chart 4).

The distances between the lay people’s placements and the birthplace of the natural language speakers as the point of reference were measured by using the kernel density estimation (KDE). The results are shown in charts 1-6. It is surprising how similar the natural language and imitation data are (chart 2). As the results of all varieties show the variation of the dialect continuum. With Upper German (chart 1), Dutch (chart 2) and Irish (chart 4) the placements of the imitation data is just a little nearer towards the point of reference than the natural language data placements.

The distances between the lay people’s placements and the birthplace of the natural language speakers as the point of reference were measured by using the kernel density estimation (KDE). The results are shown in charts 1-6. It is surprising how similar the natural language and imitation data are (chart 2). As the results of all varieties show the variation of the dialect continuum. With Upper German (chart 1), Dutch (chart 2) and Irish (chart 4) the placements of the imitation data is just a little nearer towards the point of reference than the natural language data placements.

The distances between the lay people’s placements and the birthplace of the natural language speakers as the point of reference were measured by using the kernel density estimation (KDE). The results are shown in charts 1-6. It is surprising how similar the natural language and imitation data are (chart 2). As the results of all varieties show the variation of the dialect continuum. With Upper German (chart 1), Dutch (chart 2) and Irish (chart 4) the placements of the imitation data is just a little nearer towards the point of reference than the natural language data placements.

The distances between the lay people’s placements and the birthplace of the natural language speakers as the point of reference were measured by using the kernel density estimation (KDE). The results are shown in charts 1-6. It is surprising how similar the natural language and imitation data are (chart 2). As the results of all varieties show the variation of the dialect continuum. With Upper German (chart 1), Dutch (chart 2) and Irish (chart 4) the placements of the imitation data is just a little nearer towards the point of reference than the natural language data placements.

The distances between the lay people’s placements and the birthplace of the natural language speakers as the point of reference were measured by using the kernel density estimation (KDE). The results are shown in charts 1-6. It is surprising how similar the natural language and imitation data are (chart 2). As the results of all varieties show the variation of the dialect continuum. With Upper German (chart 1), Dutch (chart 2) and Irish (chart 4) the placements of the imitation data is just a little nearer towards the point of reference than the natural language data placements.

The distances between the lay people’s placements and the birthplace of the natural language speakers as the point of reference were measured by using the kernel density estimation (KDE). The results are shown in charts 1-6. It is surprising how similar the natural language and imitation data are (chart 2). As the results of all varieties show the variation of the dialect continuum. With Upper German (chart 1), Dutch (chart 2) and Irish (chart 4) the placements of the imitation data is just a little nearer towards the point of reference than the natural language data placements.

The distances between the lay people’s placements and the birthplace of the natural language speakers as the point of reference were measured by using the kernel density estimation (KDE). The results are shown in charts 1-6. It is surprising how similar the natural language and imitation data are (chart 2). As the results of all varieties show the variation of the dialect continuum. With Upper German (chart 1), Dutch (chart 2) and Irish (chart 4) the placements of the imitation data is just a little nearer towards the point of reference than the natural language data placements.

The distances between the lay people’s placements and the birthplace of the natural language speakers as the point of reference were measured by using the kernel density estimation (KDE). The results are shown in charts 1-6. It is surprising how similar the natural language and imitation data are (chart 2). As the results of all varieties show the variation of the dialect continuum. With Upper German (chart 1), Dutch (chart 2) and Irish (chart 4) the placements of the imitation data is just a little nearer towards the point of reference than the natural language data placements.

The distances between the lay people’s placements and the birthplace of the natural language speakers as the point of reference were measured by using the kernel density estimation (KDE). The results are shown in charts 1-6. It is surprising how similar the natural language and imitation data are (chart 2). As the results of all varieties show the variation of the dialect continuum. With Upper German (chart 1), Dutch (chart 2) and Irish (chart 4) the placements of the imitation data is just a little nearer towards the point of reference than the natural language data placements.

The distances between the lay people’s placements and the birthplace of the natural language speakers as the point of reference were measured by using the kernel density estimation (KDE). The results are shown in charts 1-6. It is surprising how similar the natural language and imitation data are (chart 2). As the results of all varieties show the variation of the dialect continuum. With Upper German (chart 1), Dutch (chart 2) and Irish (chart 4) the placements of the imitation data is just a little nearer towards the point of reference than the natural language data placements.

The distances between the lay people’s placements and the birthplace of the natural language speakers as the point of reference were measured by using the kernel density estimation (KDE). The results are shown in charts 1-6. It is surprising how similar the natural language and imitation data are (chart 2). As the results of all varieties show the variation of the dialect continuum. With Upper German (chart 1), Dutch (chart 2) and Irish (chart 4) the placements of the imitation data is just a little nearer towards the point of reference than the natural language data placements.

The distances between the lay people’s placements and the birthplace of the natural language speakers as the point of reference were measured by using the kernel density estimation (KDE). The results are shown in charts 1-6. It is surprising how similar the natural language and imitation data are (chart 2). As the results of all varieties show the variation of the dialect continuum. With Upper German (chart 1), Dutch (chart 2) and Irish (chart 4) the placements of the imitation data is just a little nearer towards the point of reference than the natural language data placements.

The distances between the lay people’s placements and the birthplace of the natural language speakers as the point of reference were measured by using the kernel density estimation (KDE). The results are shown in charts 1-6. It is surprising how similar the natural language and imitation data are (chart 2). As the results of all varieties show the variation of the dialect continuum. With Upper German (chart 1), Dutch (chart 2) and Irish (chart 4) the placements of the imitation data is just a little nearer towards the point of reference than the natural language data placements.

The distances between the lay people’s placements and the birthplace of the natural language speakers as the point of reference were measured by using the kernel density estimation (KDE). The results are shown in charts 1-6. It is surprising how similar the natural language and imitation data are (chart 2). As the results of all varieties show the variation of the dialect continuum. With Upper German (chart 1), Dutch (chart 2) and Irish (chart 4) the placements of the imitation data is just a little nearer towards the point of reference than the natural language data placements.

The distances between the lay people’s placements and the birthplace of the natural language speakers as the point of reference were measured by using the kernel density estimation (KDE). The results are shown in charts 1-6. It is surprising how similar the natural language and imitation data are (chart 2). As the results of all varieties show the variation of the dialect continuum. With Upper German (chart 1), Dutch (chart 2) and Irish (chart 4) the placements of the imitation data is just a little nearer towards the point of reference than the natural language data placements.

The distances between the lay people’s placements and the birthplace of the natural language speakers as the point of reference were measured by using the kernel density estimation (KDE). The results are shown in charts 1-6. It is surprising how similar the natural language and imitation data are (chart 2). As the results of all varieties show the variation of the dialect continuum. With Upper German (chart 1), Dutch (chart 2) and Irish (chart 4) the placements of the imitation data is just a little nearer towards the point of reference than the natural language data placements.

The distances between the lay people’s placements and the birthplace of the natural language speakers as the point of reference were measured by using the kernel density estimation (KDE). The results are shown in charts 1-6. It is surprising how similar the natural language and imitation data are (chart 2). As the results of all varieties show the variation of the dialect continuum. With Upper German (chart 1), Dutch (chart 2) and Irish (chart 4) the placements of the imitation data is just a little nearer towards the point of reference than the natural language data placements.

The distances between the lay people’s placements and the birthplace of the natural language speakers as the point of reference were measured by using the kernel density estimation (KDE). The results are shown in charts 1-6. It is surprising how similar the natural language and imitation data are (chart 2). As the results of all varieties show the variation of the dialect continuum. With Upper German (chart 1), Dutch (chart 2) and Irish (chart 4) the placements of the imitation data is just a little nearer towards the point of reference than the natural language data placements.